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Abstract

Methane-a short-lived and potent greenhouse gas-presents a unique challenge: it is
emitted

from a large number of highly distributed and diffuse sources. In this regard, the
United States'

Environmental Protection Agency (EPA) has recommended periodic leak detection and
repalir

surveys at oil and gas facilities using optical gas imaging technology. This regulation
requires an

operator to fix all detected leaks within a set time period. Whether such "find-all-
fix-all' policies

are effective depends on significant uncertainties in the character of emissions. In
this work, we

systematically analyze the effect of facility-related and mitigation-related
uncertainties on

regulation effectiveness. Drawing from multiple publicly-available datasets, we find
that: (1)

highly-skewed leak-size distributions strongly influence emissions reduction potential;
(2)

varlations in emissions estimates across facilities leads to large wvariability in
mitigation

effectiveness; (3) emissions reductions from optical gas imaging-based leak detection
programs

can range from 15% to over 70%; and (4) while Implementation costs are uniformly lower
than

EPA estimates, benefits from saved gas are highly wvariable. Combining empirical
evidence with

model results, we propose four policy options for effective methane mitigation:
performanceoriented

targets for accelerated emission reductions, flexible policy mechanisms to account for

regional variation, technology-agnostic regulations to encourage adoption of the most
costeffective

measures, and coordination with other greenhouse gas mitigation policies to reduce
unintended spillover effects.

1. Introduction

Global natural gas use is very likely to increase in coming

decades [l].Replacing ccal with natural gas significantly

reduces almost all air quality impacts, solving a

profound challenge facing the rapidly growing megacities

of Asia [2]. And in developed economies, natural

gas could become more, not less, important because gas

turbines readily support flexible power grids with large

fractions of renewable power. These trends are
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strengthened by recent breakthroughs in unconventional
gas production that promisedecades of gas supply

at affordable prices. However, increased use of natural
gas has heightened climate concerns because leaked
natural gas, which 1s comprised mainly of methane, 1is a
potent greenhouse gas (GHG) [3, 4].

Globally, methane accounts for 16% of all GHGs

in the atmosphere, second only to carbon dioxide

[5]. A third of all methane emissions in the United
States (US) come from the hydrocarbon (HC) sector
(natural gas and petroleum systems) [6]. Recognizing
this, the US aims to reduce HC sector methane
emissions in 2025 to 40%45% below 2012 levels

[7]. More recently, Canada, US and Mexico agreed

to jointly reduce methane emissions [8]. Concurrently,
several important developments have

brought public attention to the methane leakage

issue. Recent incidents-like the Aliso Canyon

blowout in California, [2] and deadly explosions

in distribution systems in Taiwan [10] and

Argentina [11] have increased public scrutiny of

gas infrastructure.
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However, reducing methane emissions from our

HC system 1s a challenge. There are approximately 1M
oil and gas wells in the US, thousands of processing and
handling facilities, and millions of km of transmission
and distribution piping below our factories and cities
[4]. Eachwell can contain hundreds of possible points of
leakage, and facilities can contain thousands of
components. Thus, mitigating methane from the HC

sector requires a completely different approach than
regulations based on monitoring a small number of

large point sources (e.g. power plant C0O2 emissions).
In this context, the US EPA recently finalized

updates to the 2012 New Source Performance Standards,
henceforth called the final rule, to regulate

methane emissions from the HC sector [12]. The final
rule expects to mitigate about 0.46 million metric tons
(Mt) of methane in 2025, and result in climate benefits
worth 690 M$, at a cost of 530 M$. By comparison,

total methane emissions from the oil and gas industry
stood at 9.8 Mt (16%/34%) in 2014 [6]. The final

rule targets emissions across the natural gas supply
chain, including production, processing, gathering

and boosting, and transmission and storage sectors. It
specifies equipment replacement and operational
modifications, as well as periodic leak detection and
repalir (LDAR) surveys. EPA recommends the use of
optical gas imaging (OGI) technology in LDAR

surveys, as an alternative to the older standard
'‘Method-21" (M21), which relied on point-source
concentration measurements. OGI technology relies

on images and videos of methane leaks that are made
visible using infrared imaging cameras. In the final
rule, OGI-based LDAR i1s estimated to mitigate 60% or

% emi i T i e
80% of emissions for semiannual or quarterly surveys,
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respectively [12]. However, a recent analysis of OGI
technologies showed that OGI performance varies
significantly with environmental conditions, operator
practices, and characteristics of the facility [13].
Therefore, further study i1s needed to understand
whether 0OGI-based LDAR will result in expected
emissions reductions.

Technology effectiveness aside, recent studies of
methane emissions provide more cause for concern.
For example, many studies have found 'superemitting'
leaks, which are few in number but can

cause most of the emissions from a facility. There is
also significant regional variation [4] in emissions. To
illustrate, a recent study [14] found gathering and
processing leakage rates varied from less than 0.2% to
about 1% in different regilons. Similarly, the Bakken
region of North Dakota was found to be leaking up to

6% of produced gas [15, 16] while similar measurements
made in Texas [17] show much lower emissions

rates. In the face of this diversity, an important
question arises: Will the new policies help achieve
methane mitigation targets, and if not, are there
effective alternative frameworks?

In this work, we analyze the effectiveness of the

final rule and develop a framework to design improved
policies for methane emissions reduction. Our

findings are as follows:

1. variation in the baseline emissions estimate
between facilities leads to large wvariability in
mitigation effectiveness

2. highly heterogeneous leak-sizes found in various
empirical surveys strongly affect emissions reduction
potential;

3. enissions reductions from OGI-based LDAR

programs depend on a variety of facility-related

and mitigation-related factors and can range from

15% to over 70%;

4. while implementation costs are 27% lower than

EPA estimates, mitigation benefits can vary from
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one-third to three times EPA estimates;

5. a number of policy options will help reduce
uncertainty, while providing significant flexibility
to allow mitigation informed by local conditions.

To support these conclusions below, we first

describe our simulation framework. Then we explore
uncertainty arising from various facility-related, and
mitigation-related factors.We discuss the implications
of this uncertainty on the costs and benefits of
regulation. Lastly, we develop recommendations that
form a framework to effectively mitigate emissions
from distributed sources.

2. Methods

General approach: We use an open-source model, the
Fugitive Emissions Abatement Simulation Toolkit or
FEAST [18], that simulates methane leakage from
natural gas facilities at the component level with high
time resolution. FEAST uses information about
model-plant parameters, generates leaks from an

empirical leak-populaticon and applies OGI-based leak

detection technology to evaluate mitigation effectiveness.

Once 'detected' by the technology module, the

leaks are removed from the field. New leaks are added
over time in a stochastic manner. All simulations are
conducted for a total time of 8 years, with capital costs
distributed evenly at 7% interest, as per EPA
calculations. At the end of every simulation, the
per-site time-averaged leak rate is calculated and
compared to the time-averaged no-LDAR leak rate to
estimate the additional emission reductions due to
policy intervention (see supplementary note 2.1 at
stacks.iop.org/ERL/12/044023/mmedia) .

OGI technology model: The OGI technology

module in this work is modeled after FLIR's GasFind
IR-320 camera used for methane leak detection.

Images of plumes, as seen by the camera, are simulated
using first-principles modeling of the infrared
molecular absorption spectrum of methane and

Environ. Res. Lett. 12 (2017) 044023
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quantifying the influence of background thermal
radiation [13]. Modeling of methane leaks is
undertaken using a Gaussian plume dispersion model.

We have previously shown that the effectiveness of
using an IR camera for leak detection is strongly
dependent on environmental conditions, operator
practices, underlying leak-size distribution, and gas
composition. We use this OGI technology module to
evaluate emissions mitigation based on periodic

LDAR surveys at natural gas well sites. To realistically
model field conditions, we assume that the methane
leaks are in thermal equilibrium with the surroundings
at a temperature of 300 K, and the composite
background emissivity is 0.5. More information on
camera properties and other module parameters can

be found in online supplementary note 2.2.

Data: Parameters for model plants of all facilitytypes
are derived from the technical support

documentation provided as part of EPA's final rule
[19]. Some analysis also make use of EPA baseline
emissions calculations for appropriate comparisons to
our model. The population of #6000 leaks and the
leak-size distribution are taken from wvarious publicly
available empirical datasets of natural gas systems in
the production [20-22], gathering and boosting [23],
and transmission and storage sectors [24]. Economic
and policy parameters like capital costs, survey costs,
repair and resurvey costs, and gas prices have been
modeled after EPA's methodology [19] (also see
supplementary note 3).

3. Simulation with an open-source model

FEASTsimulates the evolution of leaks at gas facilities,
using data from a variety of publicly available data-sets
(see online supplementary note 3) to estimate

methane emissions and model the effectiveness of

ILDAR programs. It uses components counts, site
characteristics, economic data, and LDAR designs

from EPA's analysis [19] (see online supplementary
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note 4). FEAST also contains an OGI-technology

simulation module which simulates the physics of

infrared methane imaging cameras [13] (see online
supplementary note 2). In FEAST, leaks evolve via a
two-state Markov process: each component 1s in a

'leaking' or 'non-leaking' state with a finite probability
of changing state at any given time. The probability

that a leak will be found and fixed depends on the

IDAR technology employed as well as properties

unique to the gas field. Each simulation is run for a
period of 8 years with one day time steps.

FEAST contains a 'null-repair' scenario where the

total leak rate reaches steady state in the absence of any
IDAR program or policy intervention. This is due to a

null repair rate that finds and fixes leaks from the
system. The null repalr rate represents periodic repailrs
from operators undertaken through voluntary leak
mitigation programs. FEAST can then compare this
null-repair scenario results to various LDAR implementations.
FEAST outputs results showing the timeseries

of leakage from a particular realization (see

figure 1). In the 'null-repair' scenario with no-LDAR
performed, the leakage averages 0.5 g s—-1/site, with
variation due to the random leak generation process.
Figure 1 shows the leakage from the same modeled

facility under three different LDAR programs: annual,
semiannual, and quarterly OGI surveys. We see that

the mean leakage in these cases reduces (0.3 to 0.15 g
s-1/site) as survey freguency lncreases.

4., Testing the mitigation policy

Uncertainties in mitigation effectiveness of the final rule

can be studied systematically under two broad classes:

facility-related uncertainty and mitigation-related uncertainty.

Facility-related uncertainties refer to effects
01 2345¢678
0.2

<
S
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Site-level Emissions (g/s/site)
Gas-Field Markov Model
Null-repair

Annual survey

Semiannual survey

Quarterly survey

Mean leakage
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Figure 1. Time-series of a single simulation of OGI-based LDAR programs at gas well-
site facility. Four different scenarios are shown:

the null-repair scenario (green) shows a facility where leaks are repaired periocdically
via voluntary mitigation efforts, such that the

mean leakage corresponds to publicly-available measured data; and OGI-based LDAR
implementation at annual (red), semiannual

(blue), and guarterly (orange) survey schedule. The shaded area around mean leakage
values (right side bar) represents standard error.

Following EPA regulations, all detected leaks are immediately removed from the gas-
field.

Environ. Res. Lett. 12 (2017) 044023
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not related to the mitigation program:regional wvariation
in leakage, facility-dependent emissions distributions,
estimates of baseline emissions, or chemical composition
of the gas resource.Mitigation-relateduncertainties

are driven by variation in detection technologies and
their application in LDAR programs. These uncertainties
include minimum detection limits of OGI-based

cameras, the influence of environmental conditions
during the survey, and sensitivity of OGI to nonmethane
emissions. We first examine facility-related
uncertainties.

4.1. Baseline emissions: effects of voluntary

ED_004016_00078402-00009



mitigation

An important driver of mitigation effectiveness is the
rate of baseline emissions. Baseline emissions are the
steady-state leaks Iin a facility prior to the implementation
of policy-mandated LDAR programs. They vary
significantly across similar facilities because of regional
differences, operator practices, and processing
requirements. EPA calculates baseline emissions by
multiplying emissions factors for each component at a
given facility with the typical number of components

at a 'model plant' [12]. Five different model plants
with corresponding baseline emissions are specified in
the final rule: gas well-sites (GW), oil well-sites (OW),
gathering and boosting (G & B) stations, transmission
(T), and storage (3). The assumed steady-state

baseline emissions in a facility will strongly affect
the benefits from an LDAR mandate. A higher baseline
emissions rate would be associated with higher
emission-reduction potential and larger potential cost
recovery from saved gas.

To guantify the effect of variation in baseline
emissions, we simulate a semiannual OGI-based

LDAR survey at a GW site. The leak population

and their size-distributions are derived from a survey
of =400 GW sites in Texas [20] (see online

supplementary note 3). Different baseline emissions

are modeled by varying the repair rate of the null
repalr process-a high null-repair rate represents
significant voluntary emissions reductions and diligent
repalilr, leading to lower baseline emissions (online
supplementary note 5.1). Figure 2 shows the average
emissions mitigated in metric tonnes per year (tpy)
under different baseline emissions scenarios. The
diagonal blue line represents 60% emissions mitigation
as expected by the EPA for a semiannual survey.
EFmissions mitigation range from about 1.1 tpy for a
baseline leak rate of 3 tpy to over 16 tpy at a baseline
leak rate of =23 tpy. This corresponds to fractional

emission reductions ranging from 37% to 71% (see
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inset of figure 4). OGI-based reduction fractions vary
because of two related processes.While the null repair
rate 1s assumed to repalr leaks independent of its size,
the OGI-based process removes only the largest leaks.
Thus, using OGI-based leak detection technology in a
facility with baseline emissions lower than =10 tpy

tends to result in mitigation percentages that are

smaller than the expected 60%.

4.2. Effect of skewed leak-size distribution

An even more important facility-related uncertainty is

the variability in leak size distribution. Various studies
have demonstrated that leak size distributions are

highly heterogeneous, with a small fraction of 'superemitters'
contributing a large fraction of total

emissions [25]. Because the minimum detection limit

of a leak-detection technology is fixed, differing leaksize
distributions will significantly affect mitigation

even 1f the total volume of leakage remains constant.
Figure 3(a) shows normalized cunulative share plots

of five artificial leak-size distributions, A-E (see online
supplementary note 5.2). The emissions contribution

from the largest 10% of emitters varies from 30% in
distribution A (least skewed) to 70% in distribution E
(most skewed). All facilities exhibit a total emissions
volume of =10 tpy. We now plot the fractional

mitigation resulting from a semiannual OGI survey

(figure 3(b)). We see that in Facility A, OGI only
mitigates 16% of the emissions; while Facility E, with

the most-skewed leak population, mitigation exceeds

50%. Clearly, estimates of expected emissions reductions
are highly dependent on facility leak size

distributions.

We next use six publicly-available componentlevel

leak data-sets from five studies on production

[20-22], gathering and boosting [23], transmission

[24], and storage [24] facilities (figure 3(c)). We
simulate OGI based monitoring at the EPA-recommended
survey schedule for each facility. In order to

directly compare simulation results with EPA-expected

ED_004016_00078402-00011



emissions reductions, we force each facility to have
baseline emission values that corresponds to EPA
estimates for that facility type (see online supplementary
table 83 for details).

EPA est.

(60%)
EPA

0 5 10 15 20 25

30

40

50

60

70

Baseline Emissions

(tpy)
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I

raction Mitigated
ERG
EPA
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¢ 5 10 15 20 25
5

10

15

20

25

Baseline Emissions (tpy)

Mitigated Emissions (tpy)

I

igure 2. Effect of baseline emissions on the performance of

0OGI-based leak detection. Effect of baseline emission

calculations on the total amount of methane mitigated at a gas

well-site production facility. The blue line represents the 60%

mitigation level as expected in the final rule. (inset) Fractional

mitigation as a function of baseline emissions, with the EPA

assumption of 60% shown as a dashed green line.

Environ. Res. Lett. 12 (2017) 044023
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Figure 3(d) shows the fractional mitigation forOGIbased

leak detection surveys using these datasets with
typical OGI survey conditions (see online supplementary

note 2.2, but briefly: imaging distance of 5 m and

ED_004016_00078402-00012



ambient temperature of 3C0 K). In all cases, we find that
simulated emissions mitigation falls short of the EPAexpected
60% (semiannual survey) or 80% (quarterly

survey) mitigation levels (green dashed lines).

To explore the production sector cases in more

detail: a semiannual LDAR survey only reduces

emissions by 37%, 41%, and 48% in the facilities

modeled using the Allen [22], ERG [20}, and Kuo [21]
distributions, respectively. These differences arise
despite baseline emissions in all three analyses set equal
to EPA-estimated 5 tpy. Variations observed, then, can

be attributed to different leak-size distributions in the
three studies considered. This shows that assuming a
uniform baseline emissions volume for all facilities in a
given industry segment is not sufficient to drive uniform
mitigation benefits. The final rule does not model the
direct relationship between leak volumes, leak size
distributions, and leak detection effectiveness.

4.3. The role of technology and mitigation program

In addition to facility-related uncertainties explored
above, mitigation-related uncertainties are also important.
Here, we explore the impacts of four mitigationrelated
uncertainties: imaging distance, detection

criteria, ambient temperature, and ambient wind
conditions. In all cases, we model GW sites, using a
large dataset of leaks generated from peer-reviewed
studies (see online supplementary note 5.3 for details).
Figure 4(a) shows emissions reductions as a

function of imaging distance and survey frequency.
Reductions canvary fromabout 15% (imaging annually

at 50 m) to as high as 70% (imaging guarterly at 5 m).
Compared to EPA's estimate of 60% reduction from a
semiannual survey schedule, we see large variability in
mitigation potential. Our results indicate that a 60%
emissions reduction from semi-annual surveys 1s

possible only when leaks are imaged at a distance less
than Smfromthe leak source.Importantly, the final rule
does not specify an acceptable survey distance.

Furthermore, over 50% of total achievable mitigation

ED_004016_00078402-00013



at any imaging distance is realized froman annual survey
schedule, leading to less variability with changing survey
interval than might be imagined.Note that the final rule
focuses on specifying the time interval of LDARsurveys,
but does not specify a more Impactful parameter, the
survey distance.

Another mitigation-related uncertainty is the

detection sensitivity. In OGI-based LDAR, detection

ERG Kuo Allen NGML Zim. {(S) Zim. (T)
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Figure 3. (a) Normalized cumulative leak-size distribution for a set of five artificial
populations with a baseline emission of about

10 tpy. (b) Effect of artificial leak-size distributions shown in (a) on fractional
emissions mitigation at typical gas well-site production

facilities. (c¢) Normalized cumulative leak-size distribution showing the fraction of
emitters (x-axis) and the fraction of emissions

(y-—axis) for five publicly available empirical studies-three in the production sector
(ERG [20], Kuo [21], Allen [22]), and one each in

the gathering and boosting (NGML [23]), transmission (Zim.(T) [24]), and storage
(Zim. (S) [24]) sectors. (d ) Emissions mitigation

at each of the facilities shown in {(c) on an 0GI-based leak detection survey simulated
at the final rule recommended Ifrequency.

EPA-estimated mitigation values are shown in dashed green lines.
Environ. Res. Lett. 12 (2017) 044023
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depends on the visual acuity and experience of the
operator. We model this factor by varying the

minimum number of pixels affected in order for a

plume to be detected. Figure 4(b), shows that

emissions mitigation drops from =60% at a detection
criterion of 200 pixels to 16% at a detection criterion
of 10 000 pixels. In all simulations, a pixel 'registers'
the plume if the signal-to-noise ratio (SNR) of the
pixel 1is greater than or equal to 1. Specifying a higher
SNR to reduce the occurrence of false positives will
also reduce the detection effectiveness [137.
Environmental factors also affectOGI.The effects of
temperature and wind velocity are shown in figures 4 (c)
and (d), respectively. Mitigation effectiveness abruptly
drops near and below 270 K. This abrupt reduction
indicates the temperature at which the temperatureemissivity
contrast between the plume and its surroundings

fall below the SNR of the camera modeled

here. Any infrared imaging based detection system

should account for significant reduction in detection

ED_004016_00078402-00016



effectiveness at low temperatures [13]. Wind velocity
affects the dispersion of the plume in the atmosphere.
Lowwind-speeds are preferable to ensure that the plume
body remains concentrated and therefore registers a
highsSNRon camera pixels. This i1s shown quantitatively
in figure 5(d) where emissions mitigation reduced from
68% at calm atmospheric conditions with 1 m sl

winds, to about 34% at winds of about 9 m sl.

5. Fixed costs, variable benefits

The costs of mitigation associated with the final rule
can be decomposed into three categories: (1) one-time
costs to develop compliance plans and other capital
expenditures, (2) annual recurring costs assoclated
with conducting LDAR surveys, and (3) costs of the
repalr and resurvey process. Because of the way the
final rule is designed, the implementation costs do not
vary considerably between similar facilities. On the
other hand, the benefits from the expected sale of
mitigated gas ('recovery credits'), are highly wvariable.
Here, we analyze these costs and benefits at a GW site
on a semiannual OGI-based LDAR schedule. A

comparison of economic parameters between our

model and that of EPA is summarized in table S6 (see
supplementary note 4.5).

Figure 5 shows the Implementation costs (red) and
recovery credits (blue) at a site as a function of aboveexplored
uncertainties. Two important results include:

(1) implementation costs are fairly constant in both
our model and EPA estimates, but costs in our model

are 27% lower than EPA estimates; and (2) recovery
credits vary significantly with mitigation-related and
facility-related uncertainties explored above.

For semiannual LDAR monitoring, EPA estimates

the Implementation cost for all gas well-site production
facilities to be $2285/site (figure 5, red dashed
line). By comparison, we estimate a cost of about

$1670 on average, a reduction of 27% from EPA

estimates (figure 5, red triangles). The one-time costs

and the annual recurring costs of OGI-based LDAR

ED_004016_00078402-00017



surveys are identical in both models. The difference
arises because EPA has higher repair and resurvey costs
compared to our model. This occurs because the EPA
likely over-estimates the number of leaks found
through an O0GI-based LDAR survey, as discussed
below. It should be noted that both models assume
repair and resurvey costs are based on the number of
leaks detected rather than the leak size-a reasonable
assumption given that studies have shown no
135729

Wind Velocity (m/s)

0

20

40

60

80

¢

20

40

60

80

200 400 1000 4000 10000

Detection Criteria (Pixel Count)

-3 7 17 27 37

Temperature (deg. Celsius)

Emissions Mitigation (%)

0

20

40

60

80

Quarterly

Semiannual

Annual

EPA estimate: ¢0%

ED_004016_00078402-00018



50

60

70

80

Distance (m)

Emissions Mitigation (%)

EPA specs: Maximum viewing distance

operator determined

EPA specs: Not specified

EPA specs: Survey exempt under certain conditions

EPA specs: Max. wind speed operator determined

Figure 4. Effect of mitigation-related factors on the performance of 0GI-based leak

detection. Emissions mitigation at gas well-site

production facilities as a function of, (a) imaging distance at three different survey

schedules: annual (orange bars), semiannual

(purple bars), and quarterly (beige bars), (b) detection criteria

OGI instrument, (c) ambient temperature-the

(pixel counts) of the

temperature of the leak plume is assumed to be 2 K above the ambient temperature, and

(d) wind velocity. Each sub-figure also notes
EPA specifications as mentioned in the final rule.
Environ. Res. Lett. 12 (2017) 044023
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correlation between repair costs and leak size [23, 26]
(also see online supplementary note S5.4).

In estimating repair and resurvey costs, EPA

assumes that 1.18% of all components are found

leaking using OGI technology [12]. However, this
number is inferred from prior measurements of valves
in petroleum refineries using an M21 device at the

10 000 ppm screening level [27]. M21 relies on a local
concentration measurement (i.e. device returns a ppm
CH4 reading) and concentrations above a screening
threshold (i.e. 10 000 ppm) are considered leaking.
However, this M21 leak definition cannot be directly

applied to natural gas well-sites on an OGI monitoring

ED_004016_00078402-00019



schedule because of significant differences in detection
thresholds. For example, one study which surveyed

and quantified thousands of leaks at production sites
using both M21 and OGI [20] showed that only

0.175% of components were found leaking using OGI,
while 1.07% were found leaking with MZ1. An earlier

EPA study found 2.2% of components leaking with a

M21 threshold screening value of 10 000 ppm [23, p.
iii], while a recent study using OGI found 0.28% of
components leaking [21]. Thus, avallable evidence
suggests that the number of components found to be
leaking will be an order of magnitude lower using OGI
(0.1%0.3%) rather than M21 (1%2%). This

difference translates to significantly lower repair and
resurvey costs, and hence, lower LDAR implementation
costs. In our model the total implementation

costs are dominated by the cost of conducting
semiannual LDAR surveys: about 80% of GW site

costs are from surveys. This results in a case where
implementation costs are fairly constant, and independent
of mitigation effectiveness.

However, the recovery credits from sale of

captured gas vary significantly from EPA's estimates

of $764/site. Here, we consider four different factors
that affects the amount of emissions mitigated-

imaging distance, wind velocity, baseline emissions,
and leak size distribution. As imaging distance varies
from 5-50 m, the recovery credits decrease from
$1499/site to $214/site, respectively. This exemplifies
an issue with the final rule-by varying an operatorcontrolled
parameter such as imaging distance, the

policy benefits vary widely. Similar dynamics are also
at play with variations in wind velocity and other
parameters. We also consider cases where baseline
emissions range from 0.6-3 times the EPA estimate.

For facilities with baseline emissions lower than the
EPA estimate, the recovery credits available from a
semiannual survey are lower than $500/site, covering

less than a third of the implementation cost. On the
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other hand, facilities with high baseline emissions can
accrue recovery credits that are higher than the
implementation cost, resulting in a highly desirable
net-negative cost of emissions control (see online
supplementary note 6). Similarly, by varying leak-size
distributions, we see that recovery credits vary from
$381/site to about $1200/site with more heavy-tailed
distribution. This indicates that 'super-emitters’
greatly enhance the economics of OGI because the
technology favors detection of the largest leaks.
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Figure 5. Implementation costs and recovery credits for a semiannual OGI-based LDAR
survey at gas well-site facilities. EPA-estimated

implementation cost (red-dashed line) is about 27% higher than our model-estimate
averages (red triangles). Recovery credits (bl